Friday, 20 December 2013
Local Flash Flood warning System

Read more >>>
Our Local Flash Flood Warning System uses a combination of data processing, modelling and communication tools to give you the timely and accurate forecasts required to aid in proper decision making. It considers the catchment area as a whole – including flood plain and tributaries – thereby providing a more integrated, flexible and holistic approach to forecasting flash floods.

Conventional flood warning systems mainly focus on discharge predictions in the main rivers. However, local floods in smaller streams and tributaries (not generally covered by conventional warning systems) may cause a large amount of damage – particularly in urban areas.

Our Local Flash Flood Warning System overcomes this challenge by considering the entire catchment area as a whole. The system is based on existing and newly developed components of our MIKE CUSTOMISED by DHI framework. It effectively utilises a large variety of input data, sophisticated mathematical models, and advanced hydrological analysis processes.

Some of the key benefits of the system: -
  • Ability to effectively forecast local flash floods by covering the entire catchment area
  • Frequent forecast updates appropriate for local dynamic rainfall events and storms
  • Flexibility in terms of connecting to data sources
Predicting long-term shoreline movements

Read more >>>
Detailed sediment transport description from our two-dimensional (2D) coastal model, combined with a shoreline evolution model can help to effectively predict long-term shoreline movements. Our solution can thereby enable long-term forecasts of impacts of coastal structures on coastal processes and thereby help maintain integrity of the coastline.

Valid predictions of long-term shoreline movements are vital to mitigate or prepare for erosion and changes in coastal stability. Our new shoreline model introduces the concept of a 1-line model for shoreline evolution within the MIKE 21 FM framework. The model can be applied to problems over a longer time scale. This is due to the simplifications imposed on the morphologic evolution of the coastal profile, when compared with the existing two-dimensional (2D) morphological model MIKE 21 Coupled FM.

Some of the key benefits of the new shoreline model: -
  • Ability to calculate stable shoreline and shoreline envelopes and compare shoreline movements for different scenarios
  • Inherent inclusion of the effects of coastal structures in the shoreline model
  • Ability to make long-term predictions of coastal structure interactions and their impact on coastal processes
  • Maintenance of coastal profile integrity
Helping you select the best aquaculture sites for optimal production

Read more >>>
At DHI, our advanced modelling techniques and environmental and hydrodynamic expertise can help you identify optimal sites for aquaculture production. Our innovative solution combines our knowledge of chemical and biological conditions with the three-dimensional (3D) hydrodynamic modelling of our MIKE by DHI software.

The selection of suitable sites for marine aquaculture is essential for economically viable production. Different environmental requirements, such as light, nutrients, oxygen and water column stratification, must be taken into account, during such site selections.

With our 3D MIKE model and extensive knowledge, we can help you identify the best areas for optimal aquaculture production throughout the year. We can also calculate and quantify potential disease dispersal, helping you identify more safe places for future aquacultures location. Moreover our site selection tools can aid you in selecting sites with high dilution capacities to ensure that medical products and copper do not exceed the maximum allowable concentration.

Follow Blog by E-mail


15th MIKE by DHI UK User Group Meeting (7) 16th MIKE by DHI UK User Group Meeting (18) 2014 MIKE by DHI UK Symposium (7) 2015 DHI UK and Ireland Symposium (2) 2015 DHI UK Symposium (2) 2015 MIKE by DHI UK Symposium (2) 2D modelling (1) 64-bit (1) ABM Lab (4) All-Energy (1) Aqua Republica (1) aquaculture (1) bathing water quality (4) Bird Collision (1) Blog Admin (1) Breach Assessment (2) Breach Modelling (3) Burrator Historic and Natural Environment Project (1) Burrator Reservoir (1) Catchment Management (3) catchment modelling (1) Catchment Systems (1) Central Modelling Platform (1) CIWEM (2) Cliff Recession (1) Climate Change (5) Climate Change Policy (1) Climate Change Scenario Modelling (1) Climate Change Tool (4) Cloud Computing (1) coastal erosion (1) coastal inundation (1) coastal modelling (2) Coastal Oceanography (1) Computer Aided River Management (1) Conferences (2) Contaminant Transport (1) CORFU (3) coupled groundwater and ecological models (1) coupled hydrology-hydraulic modelling (1) Coupled Models (2) CPU (1) cyclones (1) Dam break (3) data sharing (1) debris factor (1) Defra (1) DEMO (4) Devon (2) Dewatering (1) DHI (163) DHI UK & Ireland Symposium 2016 (1) Dike Structure (1) Download (1) Dredging (2) Dune Erosion (1) ECO Lab (10) Ecological modelling (5) Ecosystems (2) EIA (1) Environment Agency (2) Environmental Engineering (1) Environmental Management (1) EU Floods Directive (1) European Overtopping Manual (1) EuroTop (1) FD2320 (1) FD2321 (1) Feedback (1) FEFLOW (24) FEFLOW 2012 (3) FEFLOW 2015 (2) FEFLOW Essentials (2) FEFLOW User Conference (1) flash floods (1) Flexible mesh (7) Flood and Water Management Act 2010 (1) Flood Damage Assessment (2) Flood Defences (3) flood depth (1) Flood Forecasting (6) Flood Impact Assessment (1) Flood Modelling (10) Flood Resilience (3) Flood Risk (6) Flood Risk Assessment (5) flood risk management (1) Flood Risk Management (Scotland) Act 2009 (1) Flood Risk Regulations 2009 (1) Flood Risks to People (1) flood warning (1) flood warning systems (1) Flooding (15) Floodplains (1) Fluid mechanics (1) forecasting (3) Forum (1) FRA (1) games (1) Geothermal energy (1) GIS (1) Global Tide Model (1) Google Earth (1) GPU (3) Ground Source Energy (3) Groundwater (12) Groundwater Modellers Forum (4) Groundwater Modelling (5) Guidance (4) Hazard Mapping (4) Hazard Rating (1) High Performance Computing (1) Hotfixes (1) HPC (1) hydraulics (2) ICE (2) ice flooding 2013 (3) ICE Flooding 2014 (1) ICFR (2) Integrated 1D-2D pollutant transport modelling (1) Integrated Catchment Management (8) Integrated Catchment Modelling (3) integrated modelling (5) Integrated Surface and Groundwater (9) Integrated Water Management (5) Interactive Game (1) International Conference on Flood Resilience (2) Ivybridge (1) land use changes (1) Licensing (1) Linux (1) LITPACK (4) Managed Aquifer Recharge (1) Manning's n (1) MAR (1) Marine Monitoring (1) Marine Renewable Energy (8) marine water quality (1) Maritime Archaeological Modelling (1) MIKE 11 (12) MIKE 21 (44) MIKE 21 BW (3) MIKE 21 FM (14) MIKE 21 FMHD (1) MIKE 21 FMPT (1) MIKE 21 OS (1) MIKE 21 ST (1) MIKE 21 SW (9) MIKE 21C (1) MIKE 3 (14) MIKE 3 FMPT (1) MIKE Animator (3) MIKE Animator Plus (2) MIKE BASIN (3) MIKE by DHI (173) MIKE by DHI 2014 (11) MIKE by DHI 2016 (2) MIKE by DHI UK Symposium (1) MIKE CUSTOMISED by DHI (33) MIKE FLOOD (32) MIKE FLOOD AD (2) MIKE HYDRO (1) MIKE HYDRO Basin (3) MIKE Powered by DHI (4) MIKE SDK (1) MIKE SHE (10) MIKE software (1) MIKE to Google Earth (1) MIKE URBAN (13) MIKE Zero (1) Mine Workings (2) Miniature Sensors (1) Mining (2) Mooring Forces (1) Morphological Change (2) NAM (1) News (15) Newsletter (10) Numerical modelling (1) Offshore Wind Farms (4) Oil Spill (1) Oil Spill Modelling (4) overtopping (3) Papers (1) parallelisation techniques (1) Particle Tracking (1) Planform Change (1) Plymouth University Marine Building (1) Porous Media (1) PREPARED (1) Presentations (1) productivity tools (2) Professor Kathrine Richardson (1) Queen’s University Belfast (3) rainfall data (1) rainfall dependent infiltration (1) rainfall radar (4) RDI (1) Real time control (5) Real-time (9) real-time control (1) real-time forecasts (7) Release 2011 (8) Release 2012 (13) Release 2014 (7) Release 2016 (1) Renewable energy (12) Research (1) Reservoir Inundation Modelling (1) River Modelling (4) River Monitoring (2) river restoration (1) Roughness (1) Rural Land Management Change (3) SaaS (1) Scour (2) scour risk (1) Sediment Transport (4) Serious Games (1) Service Packs (9) Sewerage (1) Shellfish Waters Directive (1) shellfisheries (1) shoreline evolution (1) slow response runoff modelling (1) Software (7) Software as a Service (1) Software Development Kit (1) Software Updates (9) South West Lakes Trust (1) SP2 (1) Spectral Wave (1) Spillway (1) Stakeholders (1) Steve Flood (1) storm surges (2) Storm Swell (1) storm water management (1) Structures (1) SuperGen UK Centre for Marine Energy Research (1) Support (9) Surface Water Flooding (4) Surface Water Management (3) Teaching (2) THE ACADEMY by DHI (42) The Catchment Approach (2) Thermal Plume Modelling (2) three-dimensional hydrodynamics (1) Tidal and storm surge water levels (1) Tidal currents (1) Tidal Energy (6) Tidal Push (1) Tides (3) Tips (4) Training (32) Treatment (1) tsunamis (1) Turbines (1) UGM (39) UK Christmas Party 2014 (1) UKCMER (1) University (2) University of Southampton (1) Urban Drainage (8) Urban Flooding (13) urban hydrology (6) User Group Meeting (36) User Group Meeting 2013 (7) User Group Meeting 2014 (10) User Group Meeting 2015 (2) Vegetation growth (1) velocity of flood waters (1) Vessel Motion (1) Wastewater (4) Wastewater Treatment Plant (2) Water Allocation (1) Water Distribution (1) Water Framework Directive (4) Water Quality (4) water quality modelling (4) Wave Energy (5) Wave Overtopping (5) Waves (6) weather radar (1) WEST (4) Wetland Restoration (1) WFD (3) wind turbine foundations (1) Workshop (1) WWTP (4) Yelverton (1)

Welcome to DHI UK

DHI is an independent, international consulting and research organisation with the global objective of advancing technological development and competence with respect to water, in all of its environments.

Worldwide, we offer a wide range of consulting services and leading edge technologies, software tools, environmental laboratories, and physical model test facilities, as well as field surveys and monitoring programmes. Designated as a not-for-profit organisation, DHI is able to invest a considerable portion of its resources in research and development. Today we co-operate with many Universities, and research organisations, and are recognised globally for our innovation and expertise.

In the UK, DHI offers niche or specialist consultancy services in the water and environment market to government agencies, commercial entities and selected research organisations. We fulfil a research based specialist advisor role; a ‘Consultant to the Consultants’. We also supply and support the renowned MIKE by DHI suite of integrated water modelling tools.

MIKE by DHI software is the result of years of experience and dedicated development and has, in many regions, become the standard modelling tool. It transforms our science into practice and gives you the competitive edge and, through the DHI Academy, you can rest assured that there is a local team of highly skilled experts committed to train and support you every step of the way.

MIKE by DHI truly models the world of water - from mountain streams to the ocean and from drinking water to treatment plant and beyond.

DHI Profile Video

Follow DHI...

Follow DHI on Facebook   Follow DHI on Twitter   Follow DHI on YouTube